- Prasad, P. N. & Williams, D. J. (1991). In Introduction to Non-Linear Optical Effects in Molecules and Polymers. New York: John Wiley. Suwinska, K., Palenik, G. J. & Gerdil, R. (1986). Acta Cryst. C42.
- 615-620.
- Taylor, E. & Skotnicki, J. (1981). Synthesis, 8, 606-608.
- Trotter, J. (1959). Acta Cryst. 12, 884-888.
- Twieg, R. J. & Dirk, C. W. (1986). J. Chem. Phys. 85, 3537-3543.
- Zyss, J. & Oudar, J. (1982). Phys. Rev. A, 26, 2028-2048.

Acta Cryst. (1996). C52, 1002-1003

Identification of the *N***-Alkylation Product** of **3**-(**2**-**Pyrrolyl**)**pyridazine**

R. Alan Jones, Anne K. Powell and Alexander P. Whitmore

School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, England. E-mail: a.powell@uea.ac.uk

(Received 17 November 1994; accepted 8 November 1995)

Abstract

The title compound has been unequivocally identified as 1-ethyl-3-(2-pyrrolyl)pyridazinium tetrafluoroborate, $C_{10}H_{12}N_3^+.BF_4^-$.

Comment

3-(2-Pyrrolyl)pyridazine may be *N*-alkylated to yield either the 1- or the 2-alkylpyridazinium salt, (1) or (2), respectively. Molecular-orbital calculations (Domingo, 1993) indicate that conjugation of the pyridazine ring with the π -electron excessive pyrrole should enhance the nucleophilicity of N2, but the observed rates of alkylation of 2-(2-pyrrolyl)pyridine and 3-(2-pyrrolyl)pyridine (Karatza, 1992) show that the 3-pyridyl system is considerably more reactive than the 2-pyridyl system. *N*-Alkylation of 3-(2-pyrrolyl)pyridazine with triethyloxonium tetrafluoroborate yields a single product, as confirmed by TLC analysis and by NMR spectroscopy, the structure of which could not be identified unambiguously from the ¹H or ¹³C NMR spectroscopic data (Whitmore, 1994).

A projection of the crystal structure of the *N*-ethylated product (Fig. 1) shows unequivocally that it is the N1 atom of the pyridazine ring which is alkylated [(1), R = Et, $X = BF_4$]. The two rings are almost coplanar with an angle of only 5.4 (1)° between their mean planes. The C(1)—C(5) bond length [1.435 (3) Å] between the two rings indicates a high degree of conjugation between the π -electron excessive pyrrole ring and the π -electron deficient pyridazinium ring. The BF₄⁻ anions are linked to the cations by hydrogen-bonding interactions, the shortest of which are C9—H9A…F1(1 - x, $\frac{1}{2} + y, \frac{3}{2} - z$) [H…F = 2.39 (4) Å] and N3—H3A…F3(x - 1, $\frac{1}{2} - y, \frac{1}{2} + z$) [H…F = 2.16 (6) Å].

Fig. 1. ORTEPII (Johnson, 1976) view of the 1-ethyl-3-(2-pyrrolyl)pyridazinium cation and the BF₄⁻ anion showing the atomic numbering scheme. Displacement ellipsoids are plotted at the 50% probability level.

Experimental

The *N*-alkylated product was obtained by the reaction of triethyloxonium tetrafluoroborate with 3-(2-pyrrolyl)-pyridazine in CH₂Cl₂ at room temperature. Recrystallization was from EtOH.

Mo $K\alpha$ radiation

Crystal data C₁₀H₁₂N⁺₃.BF⁻₄

$M_r = 261.0$	$\lambda = 0.71073 \text{ A}$
Monoclinic	Cell parameters from 20
$P2_1/c$	reflections
a = 8.232(2) Å	$\theta = 5 - 15^{\circ}$
b = 11.599(3) Å	$\mu = 0.126 \text{ mm}^{-1}$
c = 12.996(4) Å	T = 295 K
$\beta = 105.85 (2)^{\circ}$	Prism
$V = 1193.8 \text{ Å}^3$	$0.70 \times 0.50 \times 0.30$ mm
Z = 4	Yellow
$D_x = 1.452 \text{ Mg m}^{-3}$	
Data collection	
Siemens R3m/V diffractom-	$R_{\rm int} = 0.023$
eter	$\theta_{\rm max} = 25^{\circ}$
ω scans	$h=0 \rightarrow 9$
Absorption correction:	$k = 0 \rightarrow 13$
none	$l = -15 \rightarrow 14$

Acta Crystallographica Section C ISSN 0108-2701 ©1996

2392 mea	asured reflections	2 standard reflections	
2108 ind	ependent reflections	monitored every 50	
1615 obs	erved reflections	reflections	
[F > 4]	$\sigma(F)$]	intensity decay: none	

Refinement

Refinement on F	$w = 1/[\sigma^2(F) + 0.0070F^2]$
R = 0.061	$(\Delta/\sigma)_{\rm max} = 0.002$
wR = 0.105	$\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.17	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$
1615 reflections	Extinction correction: none
199 parameters	Atomic scattering factors
H atoms located by	from SHELXTL-Plus
difference synthesis and	(Sheldrick, 1991)
refined isotropically	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j.$$

	x	v	Z	U_{eq}
C(1)	0.1739(3)	0.0863 (2)	0.9600(2)	0.046(1)
C(2)	0.3011 (4)	0.0208 (3)	1.0287 (2)	0.057(1)
C(3)	0.4164 (4)	0.0746 (3)	1.1074 (3)	0.066(1)
C(4)	0.4056 (4)	0.1915 (3)	1.1164 (2)	0.066(1)
C(5)	0.0467 (3)	0.0346 (2)	0.8742 (2)	0.049(1)
C(6)	0.0305 (4)	-0.0777 (3)	0.8368 (2)	0.058(1)
C(7)	-0.1139 (4)	-0.0826(3)	0.7517(3)	0.068(1)
C(8)	-0.1823 (4)	0.0247 (3)	0.7374 (2)	0.066(1)
C(9)	0.2628 (5)	0.3753 (3)	1.0589(3)	0.070(1)
C(10)	0.1409(7)	0.4014 (3)	1.1183 (4)	0.105 (2)
N(1)	0.2828(3)	0.2488 (2)	1.0498 (2)	0.054(1)
N(2)	0.1647 (3)	0.2003 (2)	0.9710(2)	0.049(1)
N(3)	-0.0853 (3)	0.0954 (2)	0.8124 (2)	0.057(1)
B(1)	().6048 (4)	0.2063 (3)	0.4014 (3)	0.054(1)
F(1)	0.5199(3)	0.1057 (2)	0.3894(2)	0.107(1)
F(2)	0.4931 (3)	0.2943 (2)	0.3656(2)	0.094 (1)
F(3)	0.7145 (3)	0.2028 (2)	0.3405 (2)	0.108(1)
F(4)	().6862 (4)	0.2260(3)	0.5052(2)	0.117(1)

Table 2. Selected geometric parameters (Å, °)

C(1) - N(2)	1.335 (3)	C(7) - C(8)	1.358 (4)
N(1)—N(2)	1.330(3)	C(8)—N(3)	1.355 (4)
N(1) - C(4)	1.318 (4)	N(3)-C(5)	1.359 (3)
C(4)—C(3)	1.366 (5)	N(1)—C(9)	1.484 (4)
C(3) - C(2)	1.345 (4)	C(9) - C(10)	1.456 (7)
C(2) - C(1)	1.400 (4)	B(1) - F(1)	1.347 (4)
C(1)—C(5)	1.435 (3)	B(1)—F(2)	1.368 (4)
C(5)—C(6)	1.385 (4)	B(1) - F(3)	1.354 (5)
C(6)—C(7)	1.386 (5)	B(1)—F(4)	1.352 (4)
C(1)—N(2)—N(1)	116.8 (2)	C(8)—N(3)—C(5)	109.3 (2)
N(2) - N(1) - C(4)	124.1 (2)	N(3)—C(5)—C(6)	107.2 (2)
N(1) - C(4) - C(3)	120.1 (3)	N(2)—N(1)—C(9)	114.0(2)
C(4) - C(3) - C(2)	118.5 (3)	N(1)—C(9)—C(10)	110.8 (3)
C(3) - C(2) - C(1)	118.9(3)	F(1) - B(1) - F(2)	109.1 (3)
C(2) - C(1) - N(2)	121.6(2)	F(1) = B(1) = F(3)	108.4 (3)
N(2) - C(1) - C(5)	116.5 (2)	F(1) = B(1) = F(4)	111.2 (3)
C(1)—C(5)—C(6)	130.2 (2)	F(2) = B(1) = F(3)	108.5 (3)
C(5) - C(6) - C(7)	107.3 (3)	F(2) = B(1) = F(4)	108.4 (3)
C(6) - C(7) - C(8)	107.8 (3)	F(3) - B(1) - F(4)	111.1 (3)
C(7) - C(8) - N(3)	108.4 (2)		

Data collection: P3 (Siemens, 1989). Cell refinement: P3. Data reduction: XPREP in SHELXTL-Plus (Sheldrick, 1991). Structure solution: XS in SHELXTL-Plus. Structure refinement: XLS in SHELXTL-Plus. Molecular graphics: ORTEPII (Johnson, 1976) in SHELXTL-Plus. Preparation of material for publication: XPUB in SHELXTL-Plus.

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: PT1023). (00 pp.). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Domingo, L. R. (1993). Unpublished data. University of Valencia, Spain.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Karatza, M.-E. (1992). PhD thesis, University of East Anglia, England. Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1989). P3/PC Diffractometer Program. Version 3.13. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Whitmore, A. P. (1994). PhD thesis, University of East Anglia, England.

Acta Cryst. (1996). C52, 1003-1006

Trichotomine Dimethyl Ester

Kinya Iijima* and Hajime Irikawa

Department of Chemistry, Faculty of Science, Shizuoka University, 836 Oya, Shizuoka 422, Japan. E-mail: sckiiji@sci.shizuoka.ac.jp

(Received 25 August 1995; accepted 9 November 1995)

Abstract

The title compound, methyl 2-[6,11-dihydro-5-(methoxycarbonyl)-3-oxo-3*H*-indolizino[8,7-*b*]indol-2(5*H*)ylidene]-2,5,6,11-tetrahydro-3-oxo-3*H*-indolizino[8,7-*b*]indole-5-carboxylate, $C_{32}H_{24}N_4O_6$, crystallized from *tert*-butanol as the disolvate. The compound has approximate C_2 symmetry. The two central five-membered rings are linked by a C=C double bond and are approximately coplanar. The two lateral indole rings are canted slightly out of this plane by 5 and 8°. The molecular skeleton is thus essentially planar, except for the methoxycarbonyl groups, which are nearly perpendicular to the rest of the molecule.

Comment

Trichotomine, isolated from *Clerodendron trichotomum Thunb*, has an H-type chromophore similar to that of indigo (Iwadera, Shizuri, Sasaki & Hirata, 1974). It is reported that indigo is planar, but N,N'-dimethylindigo